JEDEC STANDARD

SON/QFN Package Pinouts Standardized for 1-, 2-, and 3-Bit Logic Functions

JESD75-5

JULY 2004

JEDEC SOLID STATE TECHNOLOGY ASSOCIATION

NOTICE

JEDEC standards and publications contain material that has been prepared, reviewed, and approved through the JEDEC Council level and subsequently reviewed and approved by the JEDEC Legal Counsel.

JEDEC standards and publications are designed to serve the public interest through eliminating misunderstandings between manufacturers and purchasers, facilitating interchangeability and improvement of products, and assisting the purchaser in selecting and obtaining with minimum delay the proper product for use by those other than JEDEC members, whether the standard is to be used either domestically or internationally.

JEDEC standards and publications are adopted without regard to whether or not their adoption may involve patents or articles, materials, or processes. By such action JEDEC does not assume any liability to any patent owner, nor does it assume any obligation whatever to parties adopting the JEDEC standards or publications.

The information included in JEDEC standards and publications represents a sound approach to product specification and application, principally from the solid state device manufacturer viewpoint.

No claims to be in conformance with this standard may be made unless all requirements stated in the standard are met.

Inquiries, comments, and suggestions relative to the content of this JEDEC standard or publication should be addressed to JEDEC Solid State Technology Association, 2500 Wilson Boulevard, Arlington, VA 22201-3834, (703)907-7559 or www.jedec.org.

Published by

©JEDEC Solid State Technology Association 2004 2500 Wilson Boulevard Arlington, VA 22201-3834

This documentmay be downloaded free of charge, however JEDEC retains the copyright on this material. By downloading this file the individual agrees not to charge for or resell the resulting material.

Price: Please refer to the current Catalog of JEDEC Engineering Standards and Publications at www.jedec.org

Printed in the U.S.A. All rights reserved

PLEASE!

DON'T VIOLATE THE LAW!

This document is copyrighted by the JEDEC Solid State Technology Association and may not be reproduced without permission.

Organizations may obtain permission to reproduce a limited number of copies through entering into a license agreement. For information, contact:

JEDEC Solid State Technology Association 2500 Wilson Boulevard Arlington, Virginia 22201-3834 or call (703) 907-7559

SON/QFN PACKAGE PINOUTS STANDARDIZED FOR 1-, 2-, AND 3-BIT LOGIC FUNCTIONS

(From JEDEC Board Ballot JCB-04-44, formulated under the cognizance of the JC-40 Committee on Digital Logic.)

1 Scope

This standard defines device pinout for 1-, 2- and 3-bit wide logic functions. This pinout specifically applies to the conversion of Dual-Inline-Packaged (DIP) 1-, 2- and 3-bit logic devices to SON/QFN packaged 1-, 2- and 3-bit logic devices.

The purpose of this document is to provide a pinout standard for 1-, 2- and 3-bit logic devices offered in 6- or 8-land SON/QFN packages for uniformity, multiplicity of sources, elimination of confusion, ease of device specification, and ease of use.

2 Terms and definitions (for the purpose of this document)

DIP: Dual In-line Pin Package (gull-wing)

SOP: Small-Outline Package; 0.95-mm lead pitch; 1.6mm wide body (MO-178; variations AA (5-ld), AB (6-ld), and BA (8-ld)).

SSOP: Shrink Small-Outline Package; 0.65-mm lead pitch; 5.3-mm wide body (MO-150; variation AA (8-ld)).

TSSOP: Thin Shrink Small-Outline Package; 0.65-mm lead pitch; 4.4-mm wide body (MO-153; variation AA (8-ld)).

SON: Plastic Very Very Thin (P-WFDSON), Ultra Thin (P-UFDSON), and Extremely Thin (P-XFDSON), Fine Pitch Dual Small Outline Non- Leaded Package Family (MO-252 Issue A, variation UAAD (6-ld)).

QFN: Plastic Very Very Thin (P-WFQFN), Ultra Thin (P-UFQFN), and Extremely Thin (P-XFQFN), Fine Pitch Quad Flat Small Outline, Non-Leaded Package Family (MO-255 Issue A, variation UAAD (8-ld), variation UABD (10-ld)).

3 Pinout standard

3.1 Description

The following criteria shall be used to convert existing 1-, 2- and 3-bit logic device functions offered in 5-, 6- and 8-pin DIP packages (e.g., SOP, SSOP, TSSOP) to 1-, 2- and 3-bit logic device functions offered in the 6- and 8-land SON/QFN packages:

- a) Attributes for the SON (6-ld) and QFN (8-ld) package package shall be as follows:
 - 6-land, 0.5-mm land pitch with 1.0-mm × 1.45-mm body size and 3-row × 2-column land array.
 - 8-land, 0.5-mm land pitch with 1.6-mm \times 1.6-mm body size and depopulated quad array.
- b) The pinout conversions shall be in accordance with the diagrams shown in sections 3.2 and 3.5. Each device shall be pinned out based on it's present package/pinout and the pinout tables in sections 3.3, 3.4, and 3.6.

3.2 6-land SON package (MO-252, variation UAAD)

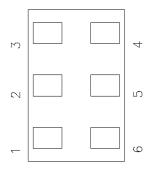


Figure 1 — Pinout configuration - Bottom view

3.3 Pin conversion from 5-pin DIP to 6-land SON package

The pinout adopts the naming convention of logic devices in 5-pin DIP packages. The signal nomenclature used in this table is intended to define the functionality of each pin and not require that a specific naming convention be followed. Each product vendor is free to name the pin according to their own conventions, provided that the functionality of the device is not altered from what is specified here.

Table 1 — 5-pin to 6-land pinout table

Function	Pin Numbers							
(See Note)	Description		2	3	4	5	6	
1G00	Single 2-input NAND gate	A	В	GND	Y	DNU	V_{DD}	
1G02	Single 2-input NOR gate	A	В	GND	Y	DNU	V_{DD}	
1G04	Single inverter	DNU	A	GND	Y	DNU	V_{DD}	
1GU04	Single unbuffered inverter	DNU	A	GND	Y	DNU	V_{DD}	
1G05	Inverter with open-drain output	DNU	A	GND	Y	DNU	V_{DD}	
1G06	Inverter with open-drain output	DNU	A	GND	Y	DNU	V_{DD}	
1G07	Single buffer/driver with open-drain output	DNU	A	GND	Y	DNU	V_{DD}	
1G08	Single 2-input AND gate	A	В	GND	Y	DNU	V_{DD}	
1G14	Single inverter with Schmitt-trigger input	DNU	A	GND	Y	DNU	V_{DD}	
1G17	Single buffer/driver with Schmitt-trigger input	DNU	A	GND	Y	DNU	V_{DD}	
1G32	Single 2-input OR gate	A	В	GND	Y	DNU	V_{DD}	
1G34	Single buffer	DNU	A	GND	Y	DNU	V_{DD}	
1G38	Single 2-input NAND gate w/ open-drain output	A	В	GND	Y	DNU	V_{DD}	
1G66	Single analog switch	I/O	I/O	GND	OE	DNU	V_{DD}	
1G79	D-type flip-flop with Q output	D	CK	GND	Q	DNU	V_{DD}	
1G80	D-type flip-flop with \overline{Q} output	D	CK	GND	\overline{Q}	DNU	V_{DD}	
1G86	Single 2-input XOR gate		В	GND	Y	DNU	V_{DD}	
1G125	Single buffer/driver with 3-state outputs		A	GND	Y	DNU	V_{DD}	
1G125	Single bus switch		A	GND	В	DNU	V_{DD}	
1G126	Single buffer/driver with 3-state outputs	OE	A	GND	Y	DNU	V_{DD}	

Table 1 — 5-pin to 6-land pinout table

Function	Description	Pin Numbers							
(See Note)	Description	1	2	3	4	5	6		
1G240	Single inverter with 3-state outputs	ŌĒ	A	GND	Y	DNU	V_{DD}		
1G384	Single bus switch	A	В	GND	ŌĒ	DNU	V_{DD}		

NOTE 1 The function designation refers to the part designation of a series of commercial logic parts common in the industry. This number is normally preceded by a series of manufacturer specific characters to make up a complete part designation.

NOTE 2 DNU means Do Not Use. This designation requires that the printed circuit landing-pad for this device terminal remain unconnected to any signal or supply potential. It must remain an open circuit. This device terminal might be connected to active or inactive circuitry within the device.

3.4 Pin conversion from 6-pin DIP to 6-land SON package

The pinout adopts the naming convention of logic devices in 6-pin DIP packages. The signal nomenclature used in this table is intended to define the functionality of each pin and not require that a specific naming convention be followed. Each product vendor is free to name the pin according to their own conventions, provided that the functionality of the device is not altered from what is specified here.

Table 2 — 6-pin to 6-land pinout table

		Pin Numbers							
Function	function Description		2	3	4	5	6		
2G04	Dual inverter	1A	GND	2A	2Y	V_{DD}	1Y		
2GU04	Dual unbuffered inverter	1A	GND	2A	2Y	V_{DD}	1Y		
2G06	Dual inverter with open-drain outputs	1A	GND	2A	2Y	V_{DD}	1Y		
2G07	Dual buffer/driver with open-drain outputs	1A	GND	2A	2Y	V_{DD}	1Y		
1G10	Single 3-input NAND gate	A	GND	В	Y	V_{DD}	С		
1G11	Single 3-input AND gate	A	GND	В	Y	V_{DD}	C		
2G14	Dual inverter with Schmitt-trigger inputs	1 A	GND	2A	2Y	V_{DD}	1Y		
2G16	Dual buffer	1A	GND	2A	2Y	V_{DD}	1Y		
2G17	Dual buffer/driver with Schmitt-trigger inputs	1A	GND	2A	2Y	V_{DD}	1Y		
1G18	1-of-2 non-inverting demux with 3-state output	S	GND	A	1Y	V_{DD}	0Y		
1G19	1-of-2 decoder/multiplexer	A	GND	ŌĒ	1Y	V_{DD}	0Y		
1G27	Single 3-input NOR	A	GND	В	Y	V_{DD}	C		
2G34	Dual buffer/driver	1A	GND	2A	2Y	V_{DD}	1Y		
1G57	Universal configurable 2-input gate	In1	GND	In0	Y	V_{DD}	In2		
1G58	Universal configurable 2-input gate	In1	GND	In0	Y	V_{DD}	In2		
1G97	Universal configurable 2-input gate	In1	GND	In0	Y	V_{DD}	In2		
1G98	Universal configurable 2-input gate		GND	In0	Y	V_{DD}	In2		
1G157	Single 2-input non-inverting multiplexer		GND	In0	Y	V_{DD}	S		
1G158	Single 2-input inverting multiplexer		GND	In0	$\overline{\overline{Y}}$	V_{DD}	S		
1G175	Single D-type flip-flop	CK	GND	D	Q	V_{DD}	CLR		
1G332	Single 3-input OR	A	GND	В	Y	V_{DD}	С		

Table 2 — 6-pin to 6-land pinout table

E4*	Description	Pin Numbers								
Function		1	2	3	4	5	6			
1G386	Single 3-input XOR	A	GND	В	Y	V_{DD}	C			
1G373	Single D-type latch	LE	GND	D	Q	V_{DD}	ŌĒ			
1G374	Single D-type flip-flop	CK	GND	D	Q	V_{DD}	ŌĒ			
1G3157	SPDT analog switch	I/O2	GND	I/O1	COM	V_{DD}	S			
1G3257	2-to-1 bus-switch multiplexer	B2	GND	B1	A	V_{DD}	S			

NOTE 1 The function designation refers to the part designation of a series of commercial logic parts common in the industry. This number is normally preceded by a series of manufacturer specific characters to make up a complete part designation.

NOTE 2 DNU means Do Not Use. This designation requires that the printed circuit landing-pad for this device terminal remain unconnected to any signal or supply potential. It must remain an open circuit. This device terminal might be connected to active or inactive circuitry within the device.

3.5 8-land QFN package (MO-255, variation UAAD)

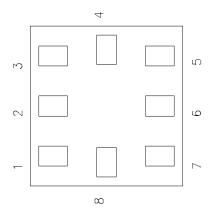


Figure 2 — Pinout configuration - Bottom view

3.6 Pin conversion from 8-pin DIP to 8-land QFN package

The pinout adopts the naming convention of logic devices in 8-pin DIP packages. The signal nomenclature used in this table is intended to define the functionality of each pin and not require that a specific naming convention be followed. Each product vendor is free to name the pin according to their own conventions, provided that the functionality of the device is not altered from what is specified here.

Table 3 — Generic conversion from 8-pin DIP package to 8-land QFN package

Package Style	Pin numbers										
8-pin DIP	1 2 3 4 5 6 7										
8-land QFN	7	6	5	4	3	2	1	8			

Table 4 — 8-pin to 8-land pinout table

Func-	5	•		-	Pin Nu	ımbers			
tion	Description	1	2	3	4	5	6	7	8
2G00	Dual 2-input NAND gate	1Y	2B	2A	GND	2Y	1B	1A	V_{DD}
2G02	Dual 2-input NOR gate	1Y	2B	2A	GND	2Y	1B	1A	V_{DD}
2G08	Dual 2-input AND gate	1Y	2B	2A	GND	2Y	1B	1A	V_{DD}
2G32	Dual 2-input OR gate	1Y	2B	2A	GND	2Y	1B	1A	V_{DD}
2G38	Dual 2-input NAND gate with open-drain output	1Y	2B	2A	GND	2Y	1B	1A	V _{DD}
2G53	Dual analog MUX/DEMUX	I/O1	I/O2	S	GND	GND	INH	COM	V_{DD}
2G66	Dual analog switch	1OE	2I/O	2I/O	GND	2OE	1I/O	1I/O	V_{DD}
2G74	Single D-type flip-flop	PRE	$\overline{\text{CLR}}$	Q	GND	\overline{Q}	D	CK	V_{DD}
2G79	Dual D-type flip-flop	1Q	2D	2CK	GND	2Q	1D	1CK	V_{DD}
2G80	Dual D-type flip-flop with inverting Q outputs	1 Q	2D	2CK	GND	2Q	1D	1CK	V_{DD}
2G86	Dual 2-input XOR gate	1Y	2B	2A	GND	2Y	1B	1A	V_{DD}
2G125	Dual buffer/driver with 3-state outputs	2 OE	1Y	2A	GND	2Y	1A	1 OE	V_{DD}
2G126	Dual buffer/driver with 3-state outputs	2OE	1Y	2A	GND	2Y	1A	1OE	V_{DD}
2G132	Dual 2-input NAND gate with schmitt-trigger inputs	1Y	2B	2A	GND	2Y	1B	1A	V_{DD}
2G139	Single 2-to-4 decoder	Y1	Y2	Y3	GND	Y4	В	A	V_{DD}
2G157	Single MUX/DEMUX	G	S	Y	GND	$\overline{\overline{Y}}$	В	A	V_{DD}
2G240	Dual inverting buffer with 3-state outputs	2 OE	1Y	2A	GND	2Y	1A	1 OE	V_{DD}
2G241	Dual buffer/driver with 3-state outputs	2OE	1Y	2A	GND	2Y	1A	1 OE	V_{DD}
2G244	Dual buffer/driver with 3-state outputs	2 OE	1Y	2A	GND	2Y	1A	1 OE	V_{DD}
3G04	Triple inverter	1Y	3A	2Y	GND	2A	3Y	1A	V_{DD}
3GU04	Triple unbuffered inverter	1Y	3A	2Y	GND	2A	3Y	1A	V_{DD}
3G05	Triple inverter with open-drain outputs	1Y	3A	2Y	GND	2A	3Y	1A	V _{DD}
3G06	Triple inverter with open-drain outputs	1Y	3A	2Y	GND	2A	3Y	1A	V_{DD}
3G07	Triple buffer/driver with open- drain outputs	1Y	3A	2Y	GND	2A	3Y	1A	V _{DD}
3G14	Triple inverter with Schmitt-trigger inputs	1Y	3A	2Y	GND	2A	3Y	1A	V_{DD}

Table 4 — 8-pin to 8-land pinout table

Func-	Daniel of an	Pin Numbers								
tion	Description	1	2	3	4	5	6	7	8	
3G17	Triple buffer/driver with Schmitt-trigger inputs	1Y	3A	2Y	GND	2A	3Y	1A	V _{DD}	
3G34	Triple buffer/driver	1Y	3A	2Y	GND	2A	3Y	1A	V_{DD}	

NOTE The function designation refers to the part designation of a series of commercial logic parts common in the industry. This number is normally preceded by a series of manufacturer specific characters to make up a complete part designation.

NOTE DNU means Do Not Use. This designation requires that the printed circuit landing-pad for this device terminal remain unconnected to any signal or supply potential. It must remain an open circuit. This device terminal might be connected to active or inactive circuitry within the device.

4 Reference to other applicable JEDEC standards and publications

JEP95, JEDEC Registered and Standard Outlines for Solid State and Related Product

Standard Improvement Form

JEDEC JESD75-5

The purpose of this form is to provide the Technical Committees of JEDEC with input from the industry regarding usage of the subject standard. Individuals or companies are invited to submit comments to JEDEC. All comments will be collected and dispersed to the appropriate committee(s).

If you can provide input, please complete this form (can be edited with Acrobat Reader) and return to:

JEDEC

Attn: Publications Department 2500 Wilson Blvd. Suite 220 Arlington, VA 22201-3834

Fax: 703.907.7583

ı a	
1.	I recommend changes to the following: Requirement, paragraph number Test method number Paragraph number The referenced paragraph number has proven to be: Unclear Too Rigid In Error
2.	Recommendations for correction:
3.	Other suggestions for document improvement:
Su	omitted by
Na	me: Phone:
	mpany: E-mail:
	dress:
Cit	//State/Zip: Date:
Cit	//State/Zip: Date:

